описание, интересные факты, виды (фото)
Древние люди далеко не всегда считали грозу и молнию, а также сопровождающий их раскат грома проявлением гнева богов. Например, для эллинов гром и молния являлись символами верховной власти, тогда как этруски считали их знамениями: если вспышка молнии была замечена с восточной стороны, это означало, что всё будет хорошо, а если сверкала на западе или северо-западе – наоборот.
Идею этрусков переняли римляне, которые были убеждены, что удар молнии с правой стороны является достаточным основанием, чтобы отложить все планы на сутки. Интересная трактовка небесных искр была у японцев. Две ваджры (молнии) считались символами Айдзен-мео, бога сострадания: одна искра находилась на голове божества, другую он держал в руках, подавляя нею все негативные желания человечества.
Небесные искры
Молния – это огромных размеров электрический разряд, который всегда сопровождается вспышкой и громовыми раскатами (в атмосфере чётко просматривается сияющий канал разряда, напоминающий дерево). При этом вспышка молнии почти никогда не бывает одна, за ней обычно следует две, три, нередко доходит и до нескольких десятков искр.
Эти разряды почти всегда образуются в кучево-дождевых облаках, иногда – в слоисто-дождевых тучах больших размеров: верхняя граница нередко достигает семи километров над поверхностью планеты, тогда как нижняя часть может почти касаться земли, пребывая не выше пятисот метров. Молнии могут образовываться как в одной туче, так и между находящимися рядом наэлектризованными облаками, а также между облаком и землей.
Секреты самых необычных природных явлений71254.24Состоит грозовая туча из большого количества пара, сконденсированного в виде льдинок (на высоте, превышающей три километра это практически всегда ледяные кристаллы, поскольку температурные показатели здесь не поднимаются выше нуля). Перед тем как туча становится грозовой, внутри неё начинают активное движение ледяные кристаллы, при этом двигаться им помогают восходящие с нагретой поверхности потоки тёплого воздуха.
Воздушные массы увлекают за собой вверх более мелкие льдинки, которые во время движения постоянно наталкиваются на более крупные кристаллы. В результате кристаллики меньших размеров оказываются заряженными положительно, более крупные – отрицательно.
После того как маленькие ледяные кристаллики собираются наверху, а большие – снизу, верхняя часть облака оказывается положительно заряженной, нижняя – отрицательно. Таким образом, напряжённость электрического поля в туче достигает чрезвычайно высоких показателей: миллион вольт на один метр.
Когда эти противоположно заряженные области сталкиваются друг с другом, в местах соприкосновения ионы и электроны образовывают канал, по которому вниз устремляются все заряженные элементы и образуется электрический разряд – молния. В это время выделяется настолько мощная энергия, что её силы вполне хватило бы на то, чтобы на протяжении 90 дней питать лампочку мощностью в 100 Вт.
Канал раскаляется почти до 30 тыс. градусов Цельсия, что в пять раз превышает температурные показатели Солнца, образуя яркий свет (вспышка обычно длится лишь три четверти секунды). После образования канала грозовое облако начинает разряжаться: за первым разрядом следуют две, три, четыре и больше искр.
Удар молнии напоминает взрыв и вызывает образование ударной волны, чрезвычайно опасной для любого живого существа, оказавшегося возле канала. Ударная волна сильнейшего электрического разряда в нескольких метрах от себя вполне способна сломать деревья, травмировать или контузить даже без прямого поражения электричеством:
- На расстоянии до 0,5 м до канала молния способна разрушить слабые конструкции и травмировать человека;
- На расстоянии до 5 метров постройки остаются целыми, но может выбить окна и оглушить человека;
- На больших расстояниях ударная волна негативных последствий не несёт и переходит в звуковую волну, известную как громовые раскаты.
Раскаты грома
Через несколько секунд после того как был зафиксирован удар молнии, из-за резкого повышения давления вдоль канала, атмосфера раскаляется до 30 тыс. градусов Цельсия. В результате этого возникают взрывообразные колебания воздуха и возникает гром. Гром и молния тесно взаимосвязаны друг с другом: длина разряда нередко составляет около восьми километров, поэтому звук с разных его участков доходит в разное время, образуя громовые раскаты.
Интересно, что измеряя время, которое прошло между громом и молнией, можно узнать, насколько далеко находится эпицентр грозы от наблюдателя.
Для этого нужно умножить время между молнией и громом на скорость звука, который составляет от 300 до 360 м/с (например, если промежуток времени составляет две секунды, эпицентр грозы находится немногим более чем в 600 метрах от наблюдателя, а если три – на расстоянии километра). Это поможет определить, удаляется или приближается гроза.
Удивительный огненный шар
Одним из наименее изученных, а потому наиболее таинственных явлений природы считается шаровая молния – передвигающийся по воздуху святящийся плазменный шар. Загадочен он потому, что принцип формирования шаровой молнии неизвестен и поныне: несмотря на то, что существует большое число гипотез, объясняющих причины появления этого удивительного явления природы, на каждую из них нашлись возражения. Учёным так и не удалось опытным путём добиться образования шаровой молнии.
Шарообразная молния способна существовать длительное время и перемещаться по непрогнозируемой траектории. Например, она вполне способна зависать несколько секунд в воздухе, после чего метнуться в сторону.
В отличие от простого разряда, плазменный шар всегда бывает один: пока не было одновременно зафиксировано двух и больше огненных молний . Размеры шаровой молнии колеблются от 10 до 20 см. Для шаровой молнии характерны белый, оранжевый или голубой тона, хотя нередко встречаются и другие цвета, вплоть до чёрного.
Ученые еще не определили температурные показатели шаровой молнии: несмотря на то, что она по их подсчётам должна колебаться от ста до тысячи градусов Цельсия, люди, находившиеся недалеко от этого феномена, не ощущали исходившей от шаровой молнии теплоты.
Основная трудность при изучении этого феномена состоит в том, что зафиксировать его появление учёным удаётся редко, а показания очевидцев часто ставят под сомнение тот факт, что наблюдаемое ими явление действительно являлось шаровой молнией. Прежде всего, расходятся показания относительно того, в каких условиях она появилась: в основном её видели во время грозы.
Существуют также показания, что шаровая молния может появляться и в погожий день: спуститься с облаков, возникнуть в воздухе или появиться из-за какого-нибудь предмета (дерева или столба).
Ещё одной характерной особенностью шаровой молнии является её проникновение в закрытые комнаты, была замечена даже в кабинах пилотов (огненный шар может проникать через окна, спускаться по вентиляционным каналам и даже вылетать из розеток или телевизора). Также были неоднократно задокументированы ситуации, когда плазменный шар закреплялся на одном месте и постоянно там появлялся.
Нередко появление шаровой молнии не вызывает неприятностей (она спокойно движется в воздушных потоках и через какое-то время улетает или исчезает). Но, были замечены и печальные последствия, когда она взрывалась, моментально испаряя находящуюся неподалёку жидкость, плавя стекло и металл.
Возможные опасности
Поскольку появление шаровой молнии всегда неожиданно, увидев возле себя этот уникальный феномен, главное, не впадать в панику, резко не двигаться и никуда не бежать: огненная молния очень восприимчива к колебаниям воздуха. Необходимо тихо уйти с траектории движения шара и постараться держаться от неё как можно дальше. Если человек находится в помещении, нужно потихоньку дойти до оконного проёма и открыть форточку: известно немало историй, когда опасный шар покидал квартиру.
В плазменный шар ничего нельзя бросать: он вполне способен взорваться, а это чревато не только ожогами или потерей сознания, но остановкой сердца. Если же случилось так, что электрический шар зацепил человека, нужно перенести его в проветриваемую комнату, теплее укутать, сделать массаж сердца, искусственное дыхание и сразу же вызвать врача.
Что такое северное сияние?71254.86Что делать в грозу
Когда начинается гроза и вы видите приближение молнии, нужно найти укрытие и спрятаться от непогоды: удар молнии нередко смертелен, а если люди и выживают, то часто остаются инвалидами.
Если же никаких построек поблизости нет, а человек в это время в поле, он должен учитывать, что от грозы лучше спрятаться в пещере. А вот высоких деревьев желательно избегать: молния обычно метит в самое большое растение, а если деревья имеют одинаковую высоту, то попадает в то, что лучше проводит электричество.
Чтобы защитить отдельно стоящее строение или конструкцию от молнии, возле них обычно устанавливают высокую мачту, наверху которой закреплён заострённый металлический стержень, надёжно соединённый с толстым проводом, на другом конце находится закопанный глубоко в землю металлический предмет. Схема работы проста: стержень от грозовой тучи всегда заряжается противоположным облаку зарядом, который, стекая по проводу под землю, нейтрализует заряд тучи.
Это устройство называется громоотвод и устанавливается на всех зданиях городов и других людских поселений.awesomeworld.ru
Как образуется молния? – boeffblog.ru
Что такое гроза?
Гроза – это атмосферное явление, которое сопровождается светомузыкальными эффектами под названиями молния и гром. Еще при грозе частенько бушует ветер и льется дождь. В общем-то каждый и сам все видел и все это знает. С дождем и ветром более менее понятно, но возникает вопрос откуда берутся молния и гром? Обычно люди, которые знают, что электричество живет в розетке, делают серьезное лицо и выдают ответ: “Это облака сталкиваются, поэтому сверкает.” Неплохой ответ конечно, но давайте ответим на этот вопрос с физической точки зрения.
Что такое молния?
Молния – это электрический разряд. Но откуда же он берется? А все начинается с облаков. С поверхности земли испаряется влага, которая поднимается вверх в виде капелек. “Стая” таких капелек собирается на определенной высоте и становится видна с земли в виде облака (в одном облаке просто невероятное количество капель). К облакам постоянно присоединяются новые капли, а старые могут отрываться от них. Если их присоединяется больше, чем отрывается, то облако растет. Размер облака по вертикали может достигать нескольких километров (расстояние от земли до нижней части облака примерно 0.5 – 2 км). В облаках температура может быть ниже нуля градусов по Цельсию, поэтому капельки замерзают и становятся льдинками. Эти льдинки находятся в постоянном движении, поэтому очень часто сталкиваются друг с другом. В результате этих столкновений одни капли/льдинки заряжаются положительно (они более легкие, поэтому поднимаются вверх), а другие отрицательно (они более тяжелые, поэтому скапливаются в нижней части облака).
При этом процессе нижняя часть облака заряжается отрицательно, а верхняя – положительно. При этом такое облако уже имеет большие размеры и становится грозовым. Нужно понимать, что не каждое облако становиться грозовым, так как этот процесс занимает длительное время, и нужно, чтобы сложились благоприятные условия (чтобы облако не распалось раньше, чем оно накопит достаточный заряд и наберет достаточную массу).
Теперь вернемся к молнии. Если два таких грозовых облака подходят на достаточно близкое расстояние (да еще одно подходит отрицательной стороной, а другое – положительной), заряженные частицы (электроны и ионы) начинают проскакивать через воздушную прослойку между двумя облаками (ведь плюс и минус, как мы знаем, должны притягиваться). Даже воздушная прослойка не может их остановить, настолько большие заряды у облаков!
Обычно первые частицы являются “полководцами”, так как они прокладывают канал между облаками, по которому сразу же устремляются миллиарды других заряженных частиц.
В этот момент мы и видим молнию!
Часто случается такое, что молния бьет прямо в землю. В этом случае сама земля выступает в качестве скопления положительного заряда, а остальное происходит как описано выше.
Почему молния имеет изломы?
Когда заряженные частицы летят через воздушную прослойку между облаками, они могут сталкиваться с молекулами воздуха или каплями (льдинками) воды. От этих столкновений меняется направление движения заряженных частиц, но в целом они продолжают двигаться в сторону второго облака, чтобы замкнуться на нем.
Почему мы слышим гром?
Гром – это звуковое сопровождение молнии, без которого невозможно достигнуть необходимого порога страха. Именно грома человек боится больше, чем светящейся полоски на небе.
При прохождении электрического разряда (молнии) происходит резкое повышение температуры окружающего воздуха до нескольких тысяч или даже миллионов градусов. Этот температурный скачок приводит к локальному расширению нагретого воздуха (взрыв), которое вызывает ударную волну (раскат грома). Если молния имеет много изломов, то мы слышим несколько раскатов грома при каждой резкой смене направления возникает новый “взрыв“.
Так как скорость звука в воздухе меньше скорости света, мы слышим гром немного позже самой вспышки. По времени задержки грома можно примерно посчитать расстояние до того места, где появилась молния. Для этого нужно посчитать: через сколько секунд слышится гром после вспышки. Каждая секунда равна расстоянию в 1 километр. То есть, если после вспышки прошло 10 секунд до того как прогремел гром, то молния сверкнула на расстоянии 10 км.
А Вы боитесь грозы??
boeffblog.ru
Как и почему возникает молния
Еще 250 лет назад знаменитый американский ученый и общественный деятель Бенджамин Франклин установил, что молния — это электрический разряд. Но до сих пор раскрыть до конца все тайны, которые хранит молния, не удается: изучать это природное явление сложно и опасно.
(20 фото молний + видео Молния в замедленной съёмке)
Внутри тучи
Грозовую тучу не спутаешь с обычным облаком. Ее мрачный, свинцовый цвет объясняется большой толщиной: нижний край такой тучи висит на расстоянии не более километра над землей, верхний же может достигать высоты 6-7 километров.
Что происходит внутри этой тучи? Водяной пар, из которого состоят облака, замерзает и существует в виде ледяных кристаллов. Восходящие потоки воздуха, идущие от нагретой земли, увлекают мелкие льдинки вверх, заставляя их все время сталкиваться с крупными, оседающими вниз.
Кстати, зимой земля нагревается меньше, и в это время года, практически, не образуется мощных восходящих потоков. Поэтому зимние грозы — крайне редкое явление.
В процессе столкновений льдинки электризуются, точно так же, как это происходит при трении различных предметов один о другой, — например, расчески о волосы. Причем, мелкие льдинки приобретают заряд положительный, а крупные — отрицательный. По этой причине верхняя часть молниеобразующего облака приобретает положительный заряд, а нижняя — отрицательный. Возникает разность потенциалов в сотни тысяч вольт на каждом метре расстояния — как между облаком и землей, так и между частями облака.
Развитие молнии
Развитие молнии начинается с того, что в некотором месте облака возникает очаг с повышенной концентрацией ионов — молекул воды и, составляющих воздух, газов, от которых отняли или к которым добавили электроны.
По одним гипотезам, такой очаг ионизации получается из-за разгона в электрическом поле свободных электронов, всегда имеющихся в воздухе в небольших количествах, и соударением их с нейтральными молекулами, которые сразу же ионизируются.
По другой гипотезе, начальный толчок вызывается космическими лучами, которые все время пронизывают нашу атмосферу, ионизируя молекулы воздуха.
Ионизированный газ служит неплохим проводником электричества, поэтому через ионизированные области начинает течь ток. Дальше — больше: проходящий ток нагревает область ионизации, вызывая всё новые высокоэнергетичные частицы, которые ионизируют близлежащие области, — канал молнии очень быстро распространяется.
Вслед за лидером
На практике процесс развития молнии происходит в несколько стадий. Сначала передний край проводящего канала, называемый «лидером», продвигается скачками по нескольку десятков метров, каждый раз, немного меняя направление (от этого молния получается извилистой). Причем скорость продвижения «лидера» может, в отдельные моменты, достигать 50 тысяч километров за одну-единственную секунду.
В конце концов, «лидер» достигает земли или другой части облака, но это еще не главная стадия дальнейшего развития молнии. После того, как ионизированный канал, толщина которого может достигать нескольких сантиметров, оказывается «пробит», по нему с огромной скоростью — до 100 тысяч километров всего за одну секунду — устремляются заряженные частицы, это и есть сама молния.
Ток в канале составляет сотни и тысячи ампер, а температура внутри канала, при этом, достигает 25 тысяч градусов — потому молния и дает столь яркую вспышку, видимую за десятки километров. А мгновенные перепады температур, в тысячи градусов, создают сильнейшие перепады давления воздуха, распространяющиеся в виде звуковой волны — грома. Этот этап длится очень недолго — тысячные доли секунды, но энергия, которая при этом выделяется, огромна.
Конечная стадия
На конечной стадии скорость и интенсивность движения зарядов в канале снижается, но, все равно, остаются достаточно большими. Именно этот момент наиболее опасен: конечная стадия может длиться только десятые (и даже меньше) доли секунды. Такое, достаточно длительное, воздействие на предметы на земле (например, на сухие деревья) часто приводит к пожарам и разрушениям.
Причем, как правило, одним разрядом дело не ограничивается — по проторенному пути могут двинуться новые «лидеры», вызывая в том же самом месте повторные разряды, по количеству доходящих до нескольких десятков.
Несмотря на то, что человечеству известна молния с момента появления самого человека на Земле, до настоящего времени она до конца еще не изучена.
Видео: Молния в замедленной съёмке
Похожие записи:
picslife.ru
Молния — Википедия. Что такое Молния
Мо́лния — электрический искровой разряд в атмосфере, обычно может происходить во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Молнии также были зафиксированы на Венере, Юпитере, Сатурне, Уране и др. Сила тока в разряде молнии на Земле достигает 10—500 тысяч ампер, напряжение — от десятков миллионов до миллиарда вольт[1].
Самая длинная молния была зафиксирована в Оклахоме в 2007 году. Её протяжённость составила 321 км. Самая продолжительная молния была зафиксирована в Альпах. Её длительность составила 7,74 секунды[2].
История изучения
Молния 1882 (с) фотограф: Уильям Н. Дженнингс, Си. 1882Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака.
Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли.
В 1989 году были обнаружены особые виды молний в верхней атмосфере: эльфы[3] и спрайты. В 1995 году был открыт другой вид молний в верхней атмосфере — джеты[3].
Виды
Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.
Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — молния облако-земля. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1—0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.
Молнии облако-земля
Процесс развития такой молнии состоит из нескольких стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.
По более современным представлениям, ионизация атмосферы для прохождения разряда происходит под влиянием высокоэнергетического космического излучения — частиц с энергиями 1012—1015эВ, формирующих широкий атмосферный ливень с понижением пробивного напряжения воздуха на порядок от такового при нормальных условиях[4].
Запуск молнии происходит от высокоэнергетических частиц, вызывающих пробой на убегающих электронах («спусковым крючком» процесса при этом являются космические лучи)[5]. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.
Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.
Анимация молнии облако-земляПо мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.
В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 20000—30000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженной, поэтому принято считать, что разряд молнии происходит от облака по направлению к земле (сверху вниз).
Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 секунду. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.
Внутриоблачные молнии
Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растёт по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.
Полёт из Калькутты в Мумбаи.Вероятность поражения молнией наземного объекта растёт по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие молниеотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.
В верхней атмосфере
Молнии и электрические разряды в верхних слоях атмосферыВ верхней атмосфере наблюдаются особые виды молний: эльфы, джеты и спрайты[6].
«Эльфы»
Эльфы (англ. Elves; Emissions of Light and Very Low Frequency Perturbations from Electromagnetic Pulse Sources) представляют собой огромные, но слабосветящиеся вспышки-конусы диаметром около 400 км, которые появляются непосредственно из верхней части грозового облака[3]. Высота эльфов может достигать 100 км, длительность вспышек — до 5 мс (в среднем 3 мс)[3][7].
Джеты
Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), продолжительность джетов больше, чем у эльфов[8][9].
Спрайты
Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний — не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало[10].
Частота
Частота молний на квадратный километр в год по данным спутникового наблюдения за 1995—2003 годыМолнии чаще всего возникают в тропиках.
Местом, где молнии встречаются чаще всего, является деревня Кифука в горах на востоке Демократической Республики Конго[11]. Там в среднем отмечается 158 ударов молний на квадратный километр в год[12]. Также молнии очень часты на Кататумбо в Венесуэле, в Сингапуре[13], городе Терезина на севере Бразилии[14] и в «Аллее молний» в центральной Флориде[15][16].
Взаимодействие с поверхностью земли и расположенными на ней объектами
Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год[17][18]. 75 % этих молний ударяет между облаками или внутри облаков, а 25 % — в землю[19].
Самые мощные молнии вызывают рождение фульгуритов[20].
Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.
Ударная волна
Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию взрывчатого вещества. Он вызывает появление ударной волны, опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны[21]:
- на расстоянии от центра 5 см (граница светящегося канала молнии) — 0,93 МПа, что сопоставимо с ударной волной, создаваемой тактическим ядерным оружием,
- на расстоянии 0,5 м — 0,025 МПа, что сопоставимо с ударной волной, вызванной взрывом артиллерийской мины и вызывает разрушение непрочных строительных конструкций и травмы человека,
- на расстоянии 5 м — 0,002 МПа (выбивание стёкол и временное оглушение человека).
На бо́льших расстояниях ударная волна вырождается в звуковую волну — гром.
Люди, животные и молния
Молнии — серьёзная угроза для жизни людей и животных. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по каналу наименьшего электрического сопротивления, что в общем случае соответствует кратчайшему пути[источник не указан 471 день] «грозовое облако — земля».
Поражение обычной линейной молнией внутри здания невозможно. Однако бытует мнение, что так называемая шаровая молния может проникать внутрь здания через щели и открытые окна.
В организме пострадавших отмечаются такие же патологические изменения, как при поражении электрическим током. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1—2 суток после смерти). Они — результат расширения капилляров в зоне контакта молнии с телом.
Пострадавший от удара молнией нуждается в госпитализации, так как подвержен риску расстройств электрической активности сердца. До приезда квалифицированного медика ему может быть оказана первая помощь. В случае остановки дыхания показано проведение реанимации, в более лёгких случаях помощь зависит от состояния и симптомов.
По одним данным, каждый год в мире от удара молнии погибают 24 000 человек и около 240 000 получают травмы[22]. По другим оценкам, в год в мире от удара молнии погибает 6000 человек[23].
В США из тех, кто получил удар молнией, погибают 9—10 %,[24]что приводит к 40—50 смертям в год в стране[25].
Вероятность, что житель США получит удар молнией в текущем году, оценивается как 1 из 960 000, вероятность того, что он когда-либо в жизни (при продолжительности жизни 80 лет) получит удар молнией, составляет 1 из 12 000[26].
Американец Рой Салливан, сотрудник национального парка, известен тем, что на протяжении 35 лет был семь раз поражён молнией и остался в живых.
Жертвы
- Российский академик Г. В. Рихман — в 1753 году погиб, вероятно, от удара шаровой молнии во время проведения научного эксперимента.
- Артемий Веркольский — 13-летний крестьянин, погибший от удара молнии и канонизированный Русской православной церковью.
- Казанский губернатор Сергей Голицын — 1 (12) июля 1738 года погиб во время охоты от удара молнии.
- Советник министра здравоохранения РФ Ланской Игорь Львович — 18 августа 2017 года погиб во время грозы возле Девичьей башни в Судаке (Крым) от удара молнии.[27]
16 июля 2016 года в деревне Красатинка Монастырщинского района Смоленской области открыли памятник погибшим от удара молнии жителям. В 1960 году они заготавливали сено для колхоза «Восход». Молния ударила в стог сена, 13 человек погибло: самому младшему было 16, старшему — 69 лет. В тот день выжил только один человек — 13-летний Володя Кузьмин.
Деревья и молния
Расщеплённое дерево в Уэльсе, Великобритания.Высокие деревья — частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний — громобоины. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах громобоины можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего — в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству[28].
Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами, и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.
По этой причине опасно прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности[29][30].
Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства[31][32].
Молния и электрооборудование
Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение, вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. В связи с этим аварии и пожары на сложном технологическом оборудовании могут возникать не мгновенно, а в период до восьми часов после попадания молнии. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования такими как разрядники, нелинейные ограничители перенапряжения, длинноискровые разрядники. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс, создаваемый молнией, который может повреждать оборудование на расстоянии до нескольких километров от места удара молнии. Достаточно уязвимыми к электромагнитному импульсу молнии являются локальные вычислительные сети.
Молния и авиация
Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса летательные аппараты оборудуются разрядниками.
Ввиду того, что электрическая ёмкость самолёта, находящегося в воздухе, невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлете и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.
Известные авиационные катастрофы, вызванные молнией:
Молния и корабли
Молния также представляет очень большую угрозу для надводных кораблей ввиду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряженности электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.
Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надежно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии, а молниеотводы гарантируют защиту людей, находящихся на палубах. Поэтому для современных надводных кораблей молния не опасна.
Растущая огненная полусфера наземного взрыва Иви Майк мощностью 10,4 Мт и молнии вокруг неёДеятельность человека, вызывающая молнию
При мощных наземных ядерных взрывах недалеко от эпицентра под действием электромагнитного импульса могут появиться молнии. Только в отличие от грозовых разрядов эти молнии начинаются от земли и уходят вверх[33].
В культуре
В древнегреческих мифах
- Асклепий, Эскулап — сын Аполлона — бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок Зевс поразил его своей молнией[34].
- Фаэтон — сын бога Солнца Гелиоса — однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс поразил Фаэтона своей молнией.
См. также
Примечания
- ↑ Кошкин Н. И., Ширкевич М. Г. Справочник по элементарной физике. 5-е изд. М: Наука, 1972 г. С. 138
- ↑ Ученые назвали самую протяженную и самую продолжительную молнии
- ↑ 1 2 3 4 Красные Эльфы и Синие Джеты
- ↑ Ермаков В. И., Стожков Ю. И. Физика грозовых облаков // Физический институт им. П. Н. Лебедева, РАН, М., 2004 г. :37
- ↑ В возникновении молний обвинили космические лучи // Lenta.Ru, 09.02.2009
- ↑ Александр Костинский. «Молниеносная жизнь эльфов и гномов» Вокруг света, № 12, 2009.
- ↑ ELVES, a primer: Ionospheric Heating By the Electromagnetic Pulses from Lightning
- ↑ Fractal Models of Blue Jets, Blue Starters Show Similarity, Differences to Red Sprites
- ↑ V.P. Pasko, M.A. Stanley, J.D. Matthews, U.S. Inan, and T.G. Wood (March 14, 2002) “Electrical discharge from a thundercloud top to the lower ionosphere, ” Nature, vol. 416, pages 152—154.
- ↑ Появление НЛО объяснили спрайтами. lenta.ru (24.02.2009). Проверено 16 января 2010. Архивировано 23 августа 2011 года.
- ↑ Kifuka – place where lightning strikes most often. Wondermondo. Проверено 21 ноября 2010.
- ↑ Annual Lightning Flash Rate. National Oceanic and Atmospheric Administration. Проверено 8 февраля 2009. Архивировано 30 марта 2008 года.
- ↑ Lightning Activity in Singapore. National Environmental Agency (2002). Проверено 24 сентября 2007. Архивировано 27 сентября 2007 года.
- ↑ Teresina: Vacations and Tourism. Paesi Online. Проверено 24 сентября 2007. Архивировано 5 сентября 2008 года.
- ↑ Staying Safe in Lightning Alley. NASA (January 3, 2007). Проверено 24 сентября 2007.
- ↑ Pierce, Kevin. Summer Lightning Ahead. Florida Environment.com (2000). Проверено 24 сентября 2007.
- ↑ John E. Oliver. Encyclopedia of World Climatology. — National Oceanic and Atmospheric Administration, 2005. — ISBN 978-1-4020-3264-6.
- ↑ Annual Lightning Flash Rate. National Oceanic and Atmospheric Administration. Проверено 15 апреля 2011. Архивировано 23 августа 2011 года.
- ↑ Where LightningStrikes. NASA Science. Science News. (December 5, 2001). Проверено 15 апреля 2011. Архивировано 23 августа 2011 года.
- ↑ К. БОГДАНОВ «МОЛНИЯ: БОЛЬШЕ ВОПРОСОВ, ЧЕМ ОТВЕТОВ». «Наука и жизнь» № 2, 2007
- ↑ Живлюк Ю. Н., Мандельштам С. Л. О температуре молнии и силе грома // ЖЭТФ. 1961. Т. 40, вып. 2. С. 483—487.
- ↑ Ronald L. Holle Annual rates of lightning fatalities by country (PDF). 0th International Lightning Detection Conference. 21-23 April 2008. Tucson, Arizona, USA. Retrieved on 2011-11-08.
- ↑ A new approach to estimate the annual number of global lightning fatalities. Проверено 20 июля 2014. Архивировано 27 июля 2014 года.
- ↑ Cherington, J. et al. 1999: Closing the Gap on the Actual Numbers of Lightning Casualties and Deaths. Preprints, 11th Conf. on Applied Climatology, 379-80.[1].
- ↑ 2008 Lightning Fatalities (PDF). light08.pdf. NOAA (22 апреля 2009). Проверено 7 октября 2009.
- ↑ Lightning – Frequently Asked Questions. National Weather Service. Проверено 17 июня 2015.
- ↑ Знакомые советника главы Минздрава рассказали, что его убило молнией, РЕН ТВ (19 августа 2017). Проверено 9 октября 2017.
- ↑ Молния // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- ↑ Правила поведения во время грозы (рус.). VLBoat.ru. Проверено 17 марта 2010. Архивировано 23 августа 2011 года.
- ↑ Ирина Лукьянчик. Как вести себя во время грозы? (рус.). Ежедневный познавательный журнал “ШколаЖизни.ру”. Проверено 17 марта 2010. Архивировано 23 августа 2011 года.
- ↑ Михайло Михайлович Нечай
- ↑ Р. Г. Рахимов. Башкирский кубыз. Маультроммель. Прошлое, настоящее, будущее. Фольклорное исследование [2]
- ↑ Ядерный взрыв в космосе, на земле и под землёй. (Электромагнитный импульс ядерного взрыва). Сб. статей / Пер. с англ. Ю. Петренко под ред. С. Давыдова. — М.: Воениздат, 1974. — 235 с., С. 5, 7, 11
- ↑ Н. А. Кун «Легенды и мифы Древней Греции» ООО «Издательство АСТ» 2005—538,[6]с. ISBN 5-17-005305-3 Стр.35-36.
Литература
- Стекольников И. К. Физика молнии и грозозащита, М. — Л., 1943;
- Разевиг Д. В. Атмосферные перенапряжения на линиях электропередачи, М. — Л., 1959;
- Юман М. А. Молния, пер. с англ., М., 1972;
- Имянитов И. М., Чубарина Е. В., Шварц Я. М. Электричество облаков. М.,1971.
Ссылки
wiki.sc
Что делать, если расходится молния?
Сложно представить современную верхнюю одежду без такого элемента фурнитуры, как молнии. Их популярность и всестороннее использование вполне объяснимы: они практичны, удобны, смотрятся эстетично, намного лучше защищают владельца куртки от снега, ветра или дождя, чем пуговицы.
Но есть у них один небольшой недостаток: при активном использовании они могут «заесть» или разойтись, причем, в самый неподходящий момент. Что делать, если замок расходится? Самое главное не нервничать и не дергать его еще сильнее. В этой статье мы расскажем только проверенные способы, как починить молнию на куртке, если она сломалась.
Почему расходится или не застегивается молния на куртке: основные причины
Замок может выйти из строя по самым разным причинам:
-
Неаккуратное использование, постоянная спешка и дергание с силой. При такой эксплуатации возникает высокий коэффициент трения между элементами застежки. В результате бегунок расшатывается, его полозья перестают застегивать, а зубчики вырываются.
-
Неправильное хранение верхней одежды в теплое время года в сложенном состоянии. От этого молния может погнуться.
-
При активном и длительном использовании детали замка просто изнашиваются.
-
Погодные условия, осадки в виде снега и дождя – это дополнительная нагрузка, требующая особой выносливости молнии.
-
Некачественная фурнитура. Растрепываются и «махрятся» нижние застежки, потому что они не проклеены. В такой ситуации становится трудно вставить одну часть замка в другую.
Верхнюю одежду обычно покупают не на один сезон, а как минимум, на два-три года. Поэтому поломка молнии в первый же месяц ее использования доставляет владельцу массу неудобств, лишние хлопоты и траты на ремонт. Чтобы этого не происходило, нужно тщательно выбирать марку производителя.
Куртки, пуховики и горнолыжные костюмы от российского бренда Stayer защитят от мороза, ветра и любых осадков. При их пошиве используется только качественная металлическая фурнитура, которая прослужит не один год. Все молнии проклеены. Этот фактор исключает возможность «расслоения» ее нижней части. У обладателей верхней одежды торговой марки «Stayer» за весь период эксплуатации просто не возникнет вопроса, что делать, если замок на пуховике или жилетке сломался? Таких ситуаций еще не было.
Что делать, если молния на куртке расходится: основные проблемы поломки замка и способы ее решения
В нашей статье вы найдете ответы на вопросы, что делать, если замок не застегивается, зубчики молнии вырваны или бегунок поломан. Они особенно актуальны для родителей маленьких детей, которые в порыве своего желания справиться со всем самостоятельно, нетерпеливо давят на замок, тянут его со всей силы наверх. Такие действия часто приводят к плачевным последствиям.
Смазка грифелем карандаша
Самый простой способ – смазывать для профилактики мягким грифелем простого карандаша. Проведите им несколько раз по внутренней и внешней стороне замка. Эффект увидите сразу – молния перестанет туго застегиваться, бегунок начнет ходить свободно.
Другие смазывающие средства, которые часто советуют для улучшения работы замка – мыло, свечи и даже сало. Но в этих случаях нужно ориентироваться на материал верхней одежды, не для всех курток эти способы подходят. На пуховиках и горнолыжных костюмах из мембраны они могут оставить жирные пятна, которые сделают внешний вид изделий не очень презентабельным. А вот для курток из кожи такие средства вполне применимы.
Разошелся замок
Это самая частая причина поломки молнии. Вариантов действий здесь может быть несколько, в зависимости от конкретной ситуации.
-
Что делать, если не застегивается молния и расходится посередине? Скорее всего вышли некоторые зубцы из общего строя, они и затрудняют работу замка в целом. Положите куртку на ровную жесткую поверхность, разровняйте обе стороны застежки, затем постучите по ее краям небольшим молотком, не много прижав, только без фанатизма. Замок начнет застегиваться туже, но основного результата вы добьетесь – расходиться он перестанет. Обратите внимание, этот вариант подходит только для металлических молний.
-
Другая ситуация – за время активного использования износился бегунок, его части стали слишком широкими. В этом случае вам поможет старый проверенный метод – зажать его с помощью плоскогубцев. Необходимо взять инструмент и прижать бегунок замка с каждого края несильным нажатием. Середину бегунка, где расположена собачка, трогать не надо. Если после первого раза вы не добились желаемого результата, попробовать повторить процедуру еще раз. После зажима бегунка, замок начинает туго застегиваться, но со временем механизм разработается. Этот вариант имеет ряд достоинств – прост, доступен, быстро решает проблему. Но есть и недостаток – процедуру можно проводить только один раз. После повторного применения плоскогубцев бегунок развалится.
Сломалась собачка
Если она не подлежит восстановлению и ремонту, ее надо полностью сменить. В специальных магазинах, где продают швейную фурнитуру, купите новый бегунок. Посмотрите на оборотной стороне старой собачки номер и купите новую деталь соответствующего размера.
Потом с помощью шила или толстой иглы снимите металлические ограничители на молнии и уберите сломанный бегунок, а новый поставьте обратно, верните ограничители на место. Если они не удерживают бегунок и он вылетает, нужно сделать их более толстыми. Для этого возьмите иголку с ниткой и прошейте пару стежков у краев ограничителя.
Сломался язычок от бегунка
Что делать, если сломался язычок бегунка? Воспользуйтесь канцелярской скрепкой или металлическим колечком от любого брелока. Вденьте его в ушко бегунка и пользуйтесь замком дальше.
В случае, если повреждено и отверстие, куда крепится язычок, смотрите пункт выше – полностью замените бегунок. Застегивание бегунка при помощи пальцев вызывает сильное трение между элементами молнии и приводит к их быстрому износу и, соответственно, поломке.
Оторвалась молния
Это частая причина, когда с замком обращаются неаккуратно, рвут бегунок с нетерпением и большой силой. В результате ткань молнии может просто оторваться от основания куртки. В этом случае рекомендуем просто пришить ее с помощью нитки и иголки. Если материал слишком толстый и прочный и простая игла не справляется, воспользуйтесь швейной машинкой.
Размахрилось основание
Такая поломка часто случается с капроновыми или пластмассовыми замками. Причина здесь, скорее всего, в некачественной фурнитуре и способе пошива. Возможно, производитель плохо проклеил основание между тканью молнии и самой поверхностью замка.
Решение этой проблемы потребует аккуратности и определенных усилий. Нужно взять маленький кусочек пластмассы или целлофановый пакет, расплавить его с помощью спички и капнуть небольшое количество под размахрившуюся поверхность, прижать, а потом, после проклеивания, разгладить. Альтернативным материалом может послужить клей-момент или специальная клеевая ткань – флизелин.
Пришить новый замок
Этот вариант особенно рекомендуют мамы активных мальчишек, которым приходится менять замки по несколько раз за сезон. Старую молнию выпарывать сложно из-за имеющихся на куртке кнопок и отделки, поэтому удобнее пришить новый замок, не трогая при этом старый. Метод, конечно, весьма необычный и креативный, но уже неоднократно проверенный на опыте. Важно приобрести новую молнию того же размера, что и старая и аккуратно пришить ее под сломанную.
Вылетел зубчик замка
Это самый сложный вариант поломки, который редко поддается самостоятельному ремонту. Если молния пластмассовая, заменить зубчик будет немного легче. Нужно взять капроновую леску и сделать стежки на месте выпавших деталей. На металлическом замке вставить потерянный зубчик сложнее.
Необходимо найти замок-донор, который будет соответствовать размеру и ширине вашей молнии. Вытащите оттуда нужные детали, с помощью шила, нитки и иголки, вставьте их на место выпавших. Если толщина новых зубчиков не совпадает и мешает работе бегунка, можно убрать лишние миллиметры обычной пилочкой для ногтей.
Крайний вариант
Что делать, если замок на куртке расходится, а у вас нет ни времени, ни сил, ни навыков, чтобы его поменять, а также финансовых возможностей приобрести новый пуховик? Отнесите вашу верхнюю одежду в ателье, чтобы вам полностью заменили замок, или в мелкий металлоремонт. Там часто работают мастера-универсалы, которые смогут за пять-десять минут сделать язычок, смазать молнию, заменить старый бегунок на новый или приклеить размахрившееся основание капронового замка. И стоить это вам будет гораздо меньше, чем покупка новой застежки.
Как ухаживать за молнией: советы по профилактике
Чтобы продлить срок службы замка и не допустить его преждевременной поломки, нужно бережно относиться к нему и выполнять простые меры по профилактике.
-
При стирке обязательно застегивайте замок и выворачивайте пуховик наизнанку.
-
Использовать специальные средства по уходу за молниями, например, гидрофобную смазку. Она делает поверхность замка водоотталкивающей и ветронепронициемой. Вся фурнитура курток и пуховиков Stayer уже имеет соответствующую пропитку, которая надежно защищает от влаги и непогоды.
-
Аккуратно обращаться: застегивать без силового нажима и спешки. Следите, чтобы молния была не натянута, а находилась в свободном положении – так будет маловероятным попадание материала в зазоры бегунка.
-
Периодически чистите застежку от загрязнений старой зубной щеткой, особенно после дождей с ветром. После них на поверхности молнии могут остаться маленькие песчинки. Если они попадут в зубчики замка, то последующие проблемы с ним неизбежны.
-
Время от времени смазывайте молнию мягким грифелем простого карандаша, а если позволяет материал верхней одежды – мылом, стеариновой или восковой свечой.
-
Застегивайте молнию правильно, до конца вставляйте обе части, перед тем, как тянуть бегунок наверх.
-
Гладьте куртку осторожно, если это необходимо для придания ей достойного внешнего вида после долгого периода хранения. Правильно выбирайте температурный режим, чтобы не расплавить и не деформировать зубчики капроновой молнии.
Эти простые правила помогут вам продлить работоспособность молнии не только на верхней одежде, но и на юбках, брюках и даже обуви.
www.stayer.su
Что такое молния? Как образуется и откуда берется это природное явление.
Тучи раскинули крылья и солнце от нас закрыли…
Почему иногда во время дождя мы слышим гром и видим молнию? Откуда берутся эти вспышки? Вот сейчас мы подробно об этом и расскажем.
Что же такое – молния?
Что такое молния? Это удивительное и очень загадочное явление природы. Она почти всегда бывает во время грозы. Кого-то изумляет, кого-то пугает. Пишут о молнии поэты, изучают это явление ученые. Но многое осталось неразгаданным.
Одно известно точно – это гигантская искра. Словно взорвался миллиард электрических лампочек! Длина ее огромна – несколько сотен километров! И от нас она очень далеко. Вот почему сначала мы видим ее, а только потом – слышим. Гром – это «голос» молнии. Ведь свет долетает до нас быстрей, чем звук.
А еще молнии бывают на других планетах. Например, на Марсе или Венере. Обычная молния длится всего долю секунды. Состоит она при этом из нескольких разрядов. Появляется молния иногда совсем неожиданно.
Как образуется молния?
Рождается молния обычно в грозовом облаке, высоко над землей. Грозовые облака появляются, когда воздух начинает сильно нагреваться. Вот почему после сильной жары бывают потрясающие грозы. Миллиарды заряженных частичек буквально слетаются в то место, где она зарождается. И когда их собирается очень-очень много, они вспыхивают. Вот откуда берется молния – из грозовой тучи. Она может ударить в землю. Земля притягивает ее. Но может разорваться и в самом облаке. Все зависит от того, какая это молния.
Какие бывают молнии?
Виды молний бывают разные. И знать об этом нужно. Это не только «ленточка» на небе. Все эти «ленточки» отличаются друг от друга.
Молния – это всегда удар, это всегда разряд между чем-то. Их насчитывают более десяти! Назовем пока только самые основные, прилагая к ним картинки молнии:
- Между грозовой тучей и землей. Это те самые «ленточки», к которым мы привыкли.
Между высоким деревом и тучей. Та же самая «ленточка», но удар направлен в другую сторону.
Ленточная молния – когда не одна «ленточка», а несколько параллельно.
- Между облаком и облаком, или просто «разыграется» в одном облаке. Такой вид молнии часто можно увидеть во время грозы. Просто нужно быть внимательным.
- Бывают и горизонтальные молнии, которые земли вообще не касаются. Они наделены колоссальной силой и считаются самыми опасными
- А о шаровых молниях слышали все! Мало только, кто их видел. Еще меньше тех, кто желал бы их увидеть. А есть и такие люди, которые в их существование не верят. Но шаровые молнии существуют! Сфотографировать такую молнию сложно. Взрывается она быстро, хотя может и «погулять», а вот человеку рядом с ней лучше не двигаться – опасно. Так что – не до фотоаппарата тут.
- Вид молнии с очень красивым названием – «Огни Святого Эльма». Но это не совсем молния. Это сияние, которое появляется в конце грозы на остроконечных зданиях, фонарях, корабельных мачтах. Тоже искра, только не затухающая и не опасная. Огни Святого Эльма – это очень красиво.
- Вулканические молнии возникают при извержении вулкана. Сам вулкан уже имеет заряд. Это, вероятно, и является причиной возникновения молнии.
- Спрайтовые молнии – это такие, которые с Земли не увидишь. Они возникают над облаками и их изучением пока мало кто занимается. Молнии эти похожи на медуз.
- Пунктирная молния почти не изучена. Наблюдать ее можно крайне редко. Визуально она действительно похожа на пунктир – будто молния-ленточка тает.
Вот такие вот бывают молнии разные. Только закон для них один – электрический разряд.
Заключение.
Еще в древности молния считалась и знамением, и яростью Богов. Она была загадкой раньше и остается ею сейчас. Как бы ни раскладывали ее на мельчайшие атомы и молекулы! И всегда это – безумно красиво!
ya-uznayu.ru
Молния. Виды, причины и опасность
В древности люди считали молнию знаком того, что божество, которому они поклоняются, сильно разгневано на них. Ведь молнии часто попадали в дома или деревья, уничтожая жильё и урожай. Даже по прошествии многих веков процесс возникновения молнии изучен не до конца, и никто точно не возьмётся сказать, когда и куда она ударит.
В отличие от наших предков мы знаем, что молния – это гигантский электрический искровой разряд, который возникает в атмосфере в облаке, между несколькими облаками или между облаками и земной поверхностью. Длина его может достигать нескольких километров. Разряд этот сопровождается яркой вспышкой света и громом или содержит несколько повторных разрядов.
Какие бывают молнии?
Существует несколько видов молний:
Линейные. Они встречаются чаще всего. Это молнии, которые будто прорезают пространство. Выглядят они как кривые яркие линии (иногда с большим количеством ответвлений), соединяющие небо и землю.Длина линейной молнии обычно составляет 2-3 километра, но может доходить и до 30 км.
Плоская. Такая молния проявляется в виде ярких вспышек, которые происходят в самом облаке. Скорее всего, она состоит из многих небольших зарядов отдельных капель.
Шаровая. Наверное, самая необычная и непознанная молния. Она представляет собой шар ярко-белого или красноватого цветов. Шаровая молния может появляться как во время грозы, так и без неё. Она может двигаться на достаточно большие расстояния. Срок её жизни составляет примерно 2 минуты, после чего она может взорваться или просто погаснуть. Шаровая молния может просачиваться в самые узкие щели. В это время она меняет свою форму, а потом опять превращается в шар.
Шаровая молния — одно из наиболее таинственных явлений на планете
Чем опасна молния?
Молния может настигнуть человека в транспорте, в открытом поле, в лесу и так далее. Температура ее достигает +30 000 °С, поэтому прямое попадание молнии в человека приводит к смерти. Находясь дома во время грозы, необходимо отключить все электроприборы, в том числе и телевизор. Нельзя разговаривать по телефону и стоять рядом с окном. Если гроза застала тебя в лесу, укройся на поляне и уйди подальше от высоких деревьев. Если гроза застала в воде, немедленно выйди из нее. В степи или поле, где укрыться негде, лучше присесть на корточки и обхватить ноги руками.
Молния всегда ударяет в самую высокую точку местности. В городе это может быть многоэтажное здание, на открытом пространстве — одиноко стоящее дерево. Попав в него, молния может поразить и укрывшегося под деревом человека.
Молния может состоять из нескольких десятков разрядов
Чтобы «поймать» молнию и отвести этот разряд в безопасное для людей место, рядом с постройками и на крышах домов сооружают громоотводы — но на самом деле они «ловят» не гром, а молнию.
Почему-то всегда больший страх вызывает гром. А бояться-то нужно молнии! Встреча с ней может быть очень опасной. Во время грозы нельзя находиться на ровном открытом месте или прятаться под одиноко стоящим деревом.
После грозы может появиться небольшой огненный шар, который тихо плывёт над землёй. Шаровая молния, как ни странно, может и не быть шаром, а иметь форму груши или сплюснутой лепёшки. Но со временем она опять стремится стать именно шариком, это самая энергетически выгодная форма для электрического заряда. По словам очевидцев, шаровая молния стремится залететь внутрь помещения через форточку, щель. Появление шаровой молнии, вдруг оказавшейся в доме или рядом с человеком на улице, обычно очень пугает. Но нельзя делать резких движений: это может спровоцировать взрыв. Разумнее всего тихо отойти в сторону, не оказаться на её пути.
Интересные факты о молниях
- Средняя длина молнии — 2,5 км. Некоторые разряды простираются в атмосфере на расстояние до 20 км.
- Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Молнии Сатурна в 1 млн раз сильнее земных.
- Воздух в зоне канала молнии практически мгновенно разогревается до температуры 25 000—30 000°С.
- От удара молнии в мире в среднем погибает около 3000 человек ежегодно.
- Из деревьев молнией чаще всего поражаются тополя (27%), груши (20%), липы (12%), ели (8%), а кедровые составляют только 0,5%.
Почему сначала гром потом молния?
Сначала сверкает молния, а через несколько секунд раздается гром. Если гроза совсем рядом с нами, то гром и молния раздаются практически одновременно. Если гроза проходит вдалеке от нас, то гром «запаздывает» на несколько секунд. Дело в том, что скорость света больше, чем скорость звука, поэтому и возникает такая разница. При сильной грозе мы часто слышим не просто гром, а целые раскаты, гром будто «ворочается» в туче. Это звуковая волна многократно отражается от других облаков и поверхности земли.
Поделиться ссылкой
sitekid.ru